Counting occurrences of 231 in an involution
نویسندگان
چکیده
We study the generating function for the number of involutions on n letters containing exactly r 0 occurrences of 231. It is shown that finding this function for a given r amounts to a routine check of all involutions of length at most 2r + 2. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Counting Occurrences of 3412 in an Involution
We study the generating function for the number of involutions on n letters containing exactly r ≥ 0 occurrences of 3412. It is shown that finding this function for a given r amounts to a routine check of all involutions on 2r + 1 letters. 2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 05C90
متن کاملInvolution Matrices of Real Quaternions
An involution or anti-involution is a self-inverse linear mapping. In this paper, we will present two real quaternion matrices, one corresponding to a real quaternion involution and one corresponding to a real quaternion anti-involution. Moreover, properties and geometrical meanings of these matrices will be given as reflections in R^3.
متن کاملCounting subwords in flattened partitions of sets
In this paper, we consider the problem of avoidance of subword patterns in flattened partitions, which extends recent work of Callan. We determine in all cases explicit formulas and/or generating functions for the number of set partitions of size n which avoid a single subword pattern of length three. The asymptotic behavior of the resulting counting sequences turns out to depend quite heavily ...
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملThe complexity of counting poset and permutation patterns
We introduce a notion of pattern occurrence that generalizes both classical permutation patterns as well as poset containment. Many questions about pattern statistics and avoidance generalize naturally to this setting, and we focus on functional complexity problems – particularly those that arise by constraining the order dimensions of the pattern and text posets. We show that counting the numb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006